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Abstract 
This paper presents a new multi objective optimization algorithm with the aim of complete 

coverage, faster global convergence and higher solution quality. In this technique, the high-speed 
characteristic of particle swarm optimization (PSO) is combined with non-dominated differential 
evolutionary (NSDE) and an efficient multi objective optimization algorithm is created. This method posses 
high convergence characteristic in quite less execution times. Generating fewer populations to find the 
Pareto front also makes the proposed algorithm use less memory. For the purpose of performance 
evaluation, the algorithm is verified with four benchmarking functions on its global optimal search ability 
and compared with two recognized algorithm to assess its diversity. The capability of the suggested 
algorithm in solving practical engineering problems such as power system protection is also studied and 
the results are discussed in detail. 

  
Keywords: Hybrid algorithm, Multi objective obtimization, PSO, NSDE, Power system protection, Relay 
coordination, IFCL 

  
 
1. Introduction 

Recently, optimization plays a significant role as a major branch of mathematics which 
is used in various sciences like power engineering, thus new investigations in this field are 
became more attractive for many researchers [1]. 

Solving nonlinear problems based on Heuristic approaches has led to many 
improvements in modern science. Many nonlinear problems according to their own structures 
work based on several parameters. Base on a fitness value which is given to each solution on 
the basis of a weighted sum of the objectives’ values, choosing the proper algorithm is feasible 
[2-4]. 

Utilizing novel multi objective optimization approaches caused several progressions and 
remarkable achievements in various industrial branches [5-8]. But the main issue is that most of 
the multi objective methods like NSGA II, NSDE and so on, work on the basis of dominance 
concept and consequently their movements are toward the optimal solution. When they attain 
the optimum solution of one of the function’s objectives, lead all the population nearby it, 
therefore searching for the other objectives executes in this specific zone [9-12]. Such 
techniques cause ignorance of the other zones’ solutions which are improper for just this 
specific objective. The other drawback of these methods is low convergence speed. 

The main goal of this investigation is to fix the above mentioned problems. In this study 
a couple of single objective optimization techniques including particle swarm optimization and 
cuckoo optimization algorithm are utilized together to perform as a multi objective optimization 
algorithm. The performance and efficiency of the presented investigation has been tested on 
power system protection.  
 
 
2. The New Multi Objective Evolutionary Optimization Algorithm using PSO and NSDE 

First by using single objective algorithm, a range is specified for each objective function 
which is going to be optimized. It guides the search to spend more time in that area. Then the 
best possible solution for all objective functions is achieved by using multi objective algorithm. 
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2.1    Reference Range Determination for Objective Functions 
In The first step is to determine an optional iterative factor corresponding to the 

calculated cost for each function.  
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Which N is the number of functions is going to be optimized, and is the iterative factor 
of each function.  

Therefore in PSO algorithm, the optimization level of each function is i x Iter; where 

Iter  is the total number of iterations.  

The obtained population is then retrieved in Position set and a value called Cost is 
assigned to each population. 
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M is the number of variables. 
At first step, a random initial population is created in sample space. But at next step, 

initial population is equal to Position set members of previous step with maximum Cost value 
(maximum profit).  

 

1 ii BPositionFPosition  

 

Which FPosition  is initial value of ith step ( 2i ), and BPosition  is population of (i-1)th 

step with best profit.  
The global best of next steps is also equal to best population created at previous steps. 
 

1 ii BPositionitionGlobalBPos  

 

Where itionGlobalBPos  is global best of ith step and BPosition  is best Position at (i-1)th 

step. 
Then, the best obtained Position in mentioned steps is used as initial population of multi 

objective optimization algorithm. 
 

  NNBPositionBPositionBPositionpop  121 ,...,,  

 
This section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs, tables and others that 
make the reader understand easily [2], [5]. The discussion can be made in several sub-
chapters. 
 
2.2. The Proposed Multi Objective Optimization Algorithm 

Now the created population from the best of PSO populations is used as initial 
population for NSDE algorithm. In each step, DE algorithm guides the population of 
solutions towards an optimum using mutation and making a difference (Figure 1). Then created 
population is ranked using domain and ranking ideas. This iterative process continues 
until optimum solutions are achieved [13-27]. 
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Figure 1. The proposed improved DE algorithm 
 
 
2.3. A Benchmark Study of Proposed Algorithm 

In this section, the efficiency of proposed multi-objective Pareto optimization algorithm 
is investigated on a set of standard benchmark problems [28]. For this purpose, the ZDT family 
of functions was selected, because they are the most recognized test functions for 
benchmarking the performance of multi-objective Pareto optimization methods. Computer 
specifications to run all optimization procedure are Core i5, CPU 3.00 GHz, 8 GB memory 
(RAM), Windows 8 operating system. Some of ZDT functions, Fonseca and Fleming functions, 
CTP1 function (two variables) and Tset function 4 which have been summarized in Table 1, 
contain two objectives. Considering Table 1, on each of the test problems and for same 
population size, suggested algorithm dramatically outperformed both NSDE and NSGA II in 
terms of run time. 

The algorithm performance is also judged by the location of solutions compared to the 
optimal Pareto front. The closer solutions to the real Pareto optimum frontier mean the better 
performance of the algorithm. The Figure 2 shows the new algorithm provides a better match to 
real Pareto front. Considering Figure 2, NSGA-II is far away from the true Pareto front for all test 
functions and NSDE for two test functions. 

 
2.4. Application of Proposed Algorithm in Solving Practical Engineering Problems 

Optimization techniques have important application in the power systems protection. 
For the object of achieving a reliable protective system, the operating time of protective devices 
must be minimized. This is a single objective optimization problem [29]. But the continuous 
changes in power flow patterns and short circuit levels due to the power system topology 
variation, cause miss-coordination between protective devices. In these situations, traditional 
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protection devices may fail to detect fault conditions. This is where the multi objective 
optimization techniques must be called to address these issues. 

 
 

Table 1. Benchmark functions 

Problem Formulation 

Run time (s) for 100 iteration and 20 
population 
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Figure 2. Optimal Pareto front for four benchmarks with population size 100 using NSGA II and 

new proposed algorithm 
 
 

Several studies have been done around these topics up to now and different multi 
objective optimization algorithms used in order to find better solutions [30-33]. But the 
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disadvantage of these algorithms such as NSGA II is that they do not cover entire space. So 
there are possibilities of solutions elimination which are optimum for just one objective function 
and acceptable for other objective functions. Another problem is the low convergence speed of 
these algorithms. If the online protection be considered, the high convergence speed becomes 
more important. 

The high convergence rate of this algorithm can be used in operations required low 
optimization time such as online power system protection. In this section, to prove capability of 
proposed technique, this algorithm is applied to optimal placement and capacity problem of 
inductive fault current limiters considering optimal overcurrent relay coordination, and the results 
are discussed in detail. 
 
 
3. Problem Definition  

First, combination of IFCLs at different locations is needed to be compared to determine 
the optimal placements. It is also required to minimize the number of IFCLs to be installed, 
because the IFCL cost increase with rise in the number of them. So, several scenarios are 
defined with different numbers and locations of IFCLs. 

The first object function equation to calculate the cost of inductive fault current limiter is 
given as follows [34]. This equation is used to calculate the minimum FCL impedance. 
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The placement of IFCLs can also have an effect on the relay coordination by changing 
the short circuit levels, therefore a new coordination of relays is also required after the 
placement of IFCLs. 

To clarify the miss-coordination problem, the second object function equation is 
stated in the following form [35]: 
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Which mbΔt , is the discrimination between main and backup relays (miss-coordination 

has occurred between bth and mth relays if Δtmb be negative.). The it , is operating time of ith 

relay. The mt , is operating times of the main relays. The bt , is operating times of the backup 

relays. The CTI , is coordination time interval. The 1 , 1  
and 2  are weighting factors.  

The above objective function should be minimized subject to various constraints. These 
constraints are relay setting constraints and backup-primary relay coordination time interval. 
The coordination constraints are: 
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The operating times of overcurrent relay is a function of fault location and short-circuit 
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Where M is the ratio of relay current to the relay setting. peakupI , is relay setting and 

max
fI , is maximum short circuit current. 

 
 

4. Results and Discussion 
The proposed method is implemented and tested on IEEE 8-bus system which shown 

in Figure 3. This system consists of 14 overcurrent relays. 
 
 

 
 

Figure 3. 8-bus test system without DGs 
 
 

Two DGs with 10 MVA capacities are connected to bus 4 and bus 5. Systems with and 
without DGs installed are compared to demonstrate how the presence of these sources 
influences the over current relay coordination. Figure 4 presents changes in the system 
topology that caused six constraints to be violated, when the network settings are considered for 
the overcurrent relays. 

 
 

 
 

Figure 4. The discrimination between main and backup relays operating time 
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The suggested technique is applied to determine the best locations and number of the 
IFCLs for the proposed network with DGs. Simulation results show the optimum number of 
IFCLs is 2 and the optimal location of X(1) and X(2) would be on lines 1-2 and 2-6 respectively.  

The solutions spreading for the considered distribution network with the purpose of 
minimizing both objective functions 1 & 2 using new method, NSDE and NSGA II are 
respectively shown in Figures 5, 6, 7.  

 
 

 
 

Figure 5. The solutions spreading over the last 50 iterations (Purposed algorithm) 
 
 

 
 

Figure 6. The solutions spreading over the last 50 iterations (NSDE) 
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Figure 7. The solutions spreading over the last 50 iterations (NSGA II) 
 
 

Table 2 shows the comparison between obtained results considering the number of 
function calls (table). To compare the speed of three mentioned methods in finding optimum 
solutions, the trend in the solutions is presented trough curves shown in Figure 8. 

 
 

Table 2. Comparison between the numbers of function calls in three mentioned technique 
Algorithm Iterations  Population size Number of function calls 

Proposed Algorithm 150 50 6181 
NSDE 150 50 7552 

NSGA II  150 50 8451 

 
 

 
 

Figure 8. Rate of convergence to the optimum over the last 50 iterations 
 
 

Considering Figure 9, the lower relay time delay setting is achieved by suggested 
algorithm. Figure 10 also demonstrates the calculated discrimination between main and backup 
relays operating time through proposed method is lower. 
 
 



Bulletin of EEI  ISSN: 2302-9285  

New Hybrid Non-Dominated Sorting Differential Evolutionary Algorithm (M. Bakhshipour) 

239 

 
 

Figure 9. Relay time delay setting 
 
 

 
 

Figure 10. The discrimination between main and backup relays operating time 
 
 
The obtained results demonstrate that the suggested approach presents a better performance 
in terms of relays coordination with respect to NSDE and NSGA II algorithms under equal 
iterations. 

 
 

5. Conclusion 
In this paper, two single objective optimization methods, particle swarm optimization 

and cuckoo optimization algorithm were used together in the form of a multi objective 
optimization algorithm. In proposed method, determination of initial limited area for each 
objective function, and moving all functions toward global optimum, caused the range of 
solutions covered the entire space and not limited to a specific area. In this technique, the 
members of rank 2 (or upper) had been also moved quickly toward lower ranked points. This 
caused faster convergence to the optimum solution. For the purpose of performance evaluation, 
the proposed multi-objective Pareto optimization algorithm had been investigated on a set of 
standard benchmark problems. From the results of these test functions, it had seen that the 
proposed algorithm remarkably outperformed a known algorithm (NSGA II), in terms of 
better matching to optimum Pareto front, run time and solutions diversity.  

The capability of this algorithm in solving complex engineering problems such as power 
system protection had been also studied. The results indicated that the fast convergence and 
high speed characteristic of suggested approach can be used in online applications require fast 
decision-making such as online power system protection.  
 
 



                     ISSN: 2302-9285 

Bulletin of EEI Vol. 5, No. 2, June 2016 :  230 – 241 

240 

References 
[1]  Kotinis M. A particle swarm optimizer for constrained multi-objective engineering design problems. 

Engineering Optimization. 2010; 42: 907–926. 
[2]  Xue B, Zhang M, Browne WN. Particle swarm optimization for feature selection in classification: A 

multi-objective approach. IEEE Transactions on Cybernetics. 2013; 43: 1656–1671. 
[3]  Xue B, Cervante L, Shang L, Browne WN, Zhang M. A multi-objective particle swarm optimisation for 

filter-based feature selection in classification problems. Connection Science. 2012; 24: 91–116. 
[4]  Yun R, Yu CS. Improved NSGAII with a new distribution and its application in multi-objective 

reservoir operation. Applied Mechanics and Materials. 2011; 90-93: 279–286. 
[5]  Bernardon DP, Garcia VJ, Ferreira ASQ, Canha LN. Multicriteria distribution network reconfiguration 

considering subtransmission analysis. IEEE Trans. Power Deliv. 2010; 25: 2684–2691. 
[6]  Amanulla B, Chakrabarti S, Singh SN. Reconfiguration of power distribution systems considering 

reliability and power loss. IEEE Trans. Power Deliv. 2012; 27: 918–926. 
[7]  Matcha, Murali, Sharath Kumar Papani, and Vijetha Killamsetti. "Adaptive Relaying of Radial 

Distribution System with Distributed Generation". International Journal of Electrical and Computer 
Engineering (IJECE). 2013; 3(3): 407-414. 

[8]  KR, Aejaz Ahmed, Mohd ZA Ansari, and Mohamed Jalaluddin. "Simulation Analysis of a Power 
System Protection using Artificial Neural Network". International Journal of Electrical and Computer 
Engineering (IJECE). 2012; 3(1): 78-82. 

[9]  Liu Y, Collette M. Improving surrogate-assisted variable fidelity multi-objective optimization using a 
clustering algorithm. Applied Soft Computing. 2014; 24: 482–493. 

[10]  Zhao W, Sameer A, Abbass HA. MOCCA-II: A multi-objective co-operative co-evolutionary algorithm. 
Applied Soft Computing. 2014; 23: 407–416. 

[11]  Zhao X, Liu Z, Yang X. A multi-swarm cooperative multistage perturbation guiding particle swarm 
optimizer. Applied Soft Computing. 2014; 22: 77–93. 

[12]  Xu G, Yang Y, Liu B, Xu Y, Wu A. An efficient hybrid multi-objective particle swarm optimization with 
a multi-objective dichotomy line search. Journal of Computational and Applied Mathematics. 2014; 
280: 310–326. 

[13]  Singh, Himmat, and Laxmi Srivastava. Modified Differential Evolution algorithm for multi-objective 
VAR management. International Journal of Electrical Power & Energy Systems. 2014; 55: 731-740. 

[14]  Ali, Musrrat, Patrick Siarry, and Millie Pant. An efficient differential evolution based algorithm for 
solving multi-objective optimization problems. European journal of operational research. 2012; 217: 
404-416. 

[15]  Yildiz, Ali R. Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning 
operations. Applied Soft Computing. 2013; 13: 1433-1439. 

[16]  Wang, Ligang et al. Multi-objective optimization of coal-fired power plants using differential evolution. 
Applied Energy. 2014; 115: 254-264. 

[17]  Bonilla-Petriciolet, Adrián, Shivom Sharma, and Gade Pandu Rangaiah.  Phase Equilibrium Data 
Reconciliation Using Multi-Objective Differential Evolution with Tabu List. Multi-Objective Optimization 
in Chemical Engineering: Developments and Applications. 2013; 46: 267-292. 

[18]  Yildiz, Ali R. A new hybrid differential evolution algorithm for the selection of optimal machining 
parameters in milling operations.  Applied Soft Computing. 2013; 13: 1561-1566. 

[19]  Li, Yan-Fu, Giovanni Sansavini, and Enrico Zio.  Non-dominated sorting binary differential evolution 
for the multi-objective optimization of cascading failures protection in complex networks. Reliability 
Engineering & System Safety. 2013; 111: 195-205. 

[20]  Zhang, Huifeng et al. Daily hydrothermal scheduling with economic emission using simulated 
annealing technique based multi-objective cultural differential evolution approach. Energy. 2013; 50: 
24-37. 

[21]  Goudos, Sotirios K et al. A Multi-Objective Approach to Subarrayed Linear Antenna Arrays Design 
Based on Memetic Differential Evolution. IEEE Transactions on Antennas and Propagation. 2013; 61: 
3042-3052. 

[22]  Preetha Roselyn J, D Devaraj and Subhransu Sekhar Dash.  Multi Objective Differential Evolution 
approach for voltage stability constrained reactive power planning problem. International Journal of 
Electrical Power & Energy Systems. 2014; 59: 155-165. 

[23]  Lai, Johnny CY et al.  Hypoglycaemia detection using fuzzy inference system with multi-objective 
double wavelet mutation Differential Evolution. Applied Soft Computing. 2013; 13: 2803-2811. 

[24]  Zhang, Huifeng et al. Short term hydrothermal scheduling using multi-objective differential evolution 
with three chaotic sequences. International Journal of Electrical Power & Energy Systems. 2013; 47: 
85-99. 

[25]  Guo, Jun et al. A novel multi-objective shuffled complex differential evolution algorithm with 
application to hydrological model parameter optimization. Water resources management. 2013; 27: 
2923-2946. 

[26]  Xu, Bin et al. Optimization of p-xylene oxidation reaction process based on self-adaptive multi-
objective differential evolution. Chemometrics and Intelligent Laboratory Systems. 2013; 127: 55-62. 



Bulletin of EEI  ISSN: 2302-9285  

New Hybrid Non-Dominated Sorting Differential Evolutionary Algorithm (M. Bakhshipour) 

241 

[27]  Zhang, Huifeng et al. An efficient multi-objective adaptive differential evolution with chaotic neuron 
network and its application on long-term hydropower operation with considering ecological 
environment problem. International Journal of Electrical Power & Energy Systems. 2013; 45: 60-70. 

[28]  Chase N, Rademacher M, E Goodman E. A Benchmark Study of Multi objective Optimization 
Methods. 

[29]  Thangaraj R, Pant M, Deep K. Optimal coordination of over-current relays using modified differential 
evolution algorithms. Engineering Applications of Artificial Intelligence. 2010; 23: 820–829. 

[30]  Amorim EA, Hashimoto SHM, Lima FGM, Mantovani JRS. Multi Objective Evolutionary Algorithm 
Applied to the Optimal Power Flow Problem. Latin America Transactions, IEEE (Revista IEEE 
America Latina). 2010; 8: 236 – 244. 

[31]  Abido MA. Multi objective evolutionary algorithms for electric power dispatch problem. IEEE 
Transactions on Evolutionary Computation. 2006; 10: 315 – 329. 

[32]  Mendoza F, Bernal-Agustin JL, Dominguez-Navarro JA. NSGA and SPEA Applied to Multi objective 
Design of Power Distribution Systems. IEEE Transactions on Power Systems. 2006; 21: 1938-1945. 

[33]  Zhihuan L, Yinhong L, Xianzhong D. Non-dominated sorting genetic algorithm-II for robust multi-
objective optimal reactive power dispatch. Generation, Transmission & Distribution, IET. 2010; 4: 
1000 – 1008. 

[34]  Razavi F, Askarian Abyaneh H, Al-Dabbagh M, Mohammadi R, Torkaman H. A new comprehensive 
genetic algorithm method for optimal overcurrent relays coordination. Electric Power Systems 
Research. 2008; 78: 713–720. 

[35]  Mirzakhani A, Taghikhani M. Retrieval system protection coordination of distribution networks after 
the installation of distributed generation resources with an intelligent algorithm. Tech J Engin & App 
Sci. 2013: 3333-3345. 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5538398&refinements%3D4291944246%26queryText%3DMOEA+power
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5538398&refinements%3D4291944246%26queryText%3DMOEA+power
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5538398&refinements%3D4291944246%26queryText%3DMOEA+power

